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and
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ABSTRACT. An optimization problem is formulated motivated by the de-
sire to remove temperature peaks, i.e., “hot spots”, along the bounding
surfaces of containers of fluid flows. The heat equation of the solid con-
tainer is coupled to the energy equations for the fluid. Heat ‘sources can
be located in the solid body, the fluid, or both. Control is effected by ad-
justments to the temperature of the fluid at the inflow boundary. Both
mathematical analyses and computational experiments are given.

1. INTRODUCTION

We suppose that the regular bounded domain Q2 in R? is made up of two sub-
domains 2, and Q, separated by an interface T, with the result that @ =, U, uU
T', (see Figure 1). The solid material occupies a sub-domain , having a boundary
T,uTl,uTl;UT, and the fluid flow occupies a domain Q, having a boundary
T,ul,uTl, UuT,. We have an inflow boundary T, an outfiow boundary T',, and
a solid wall T',. The geometry of all these boundary segments is prescribed, as are
the inflow velocity u, and temperature T,. At the outflow, one can impose one’s
favorite outflow boundary conditions. On the walls, we have the no slip boundary
conditions for the velocity. Control is to be effected through heating and cooling
along the boundary I'..

The temperature is specified along the boundary I'. and the heat-flux is specified
along the boundary I, UT,UT3U T,UT,. We assume that the flow is incompressible
and convection driven so that buoyancy effects can be neglected, and thus tempera-
ture effects on the mechanical properties of the flow, i.e., the velocity and pressure,
are negligible. We are interested in controls such that we get a desired temperature
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Fluid Flow Domain 2,
T, To
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FiGURE 1. The Domain
along T, or a portion I', C Ty, and thus we assume that the flow is stationary.
Other combinations of control and controlled surfaces are also possible.
As a result of our assumptions about the flow, the state variables, i.e., the velocity

u, pressure p, temperature 7', and control g are required to satisfy the Navier-Stokes

equations

(1.1) —vAu+(u-V)u+Vp=1f inQ,
the incompressibility constraint

(1.2) divu=0 inQ,,

and, for simplicity, the boundary condition

(1.3) u=h onl,,

(1.4) u=0 onl,UT,,
du

(1.5) 5; - 0 on ro’

and the energy equations

(1.6) —K]_AT=Q1 in Qla

(1.7) = RkAT + (u- V)T = Q5+ 2u(Vu + VuT) : (Vu+ Vu”) in Q,,
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with the boundary conditions

(1.8) T=g onl,,
(1.9) %=0 OnF1UPQUP3UI‘4UF°-

The data functions f, h, Q, and @, are assumed to be known. The constant v is the
kinematic viscosity coefficient of the fluid, and the constants x,, x, and u depend
on the thermal conductivity coefficient, density, specific heat at constant volume,
and viscosity coefficient of the fluid; see [17] for details.

Note that as a result of our assumptions about the flow, the mechanical equations
(1.1)-(1.5) uncouple from the thermal equations (1.6)-(1.9). Indeed, (1.6)-(1.9) may
be solved for u and p without regard of the temperature T. Thus, in the present
context, the velocity field u, which is determined by solving (1.1)-(1.5), merely acts
as a coefficient function and in the source term in (1.7).

We now define the optimal control problem to obtain our objective. For example,
given a velocity field u, we would seek a temperature field T and a control g such
that the functional
Kqb

—_— 1 2
(1.10) I(T.0) = 5 /r IT - Tuf? dr + =2

/F (lg1? + |V,g]?) dT

is minimized subject to (1.6)-(1.9), where V, denotes the surface gradient operator
and T} is some desired temperature distribution, e.g., something close to the average
temperature along I'; for the uncontrolled system. The non-negative parameters v
and 6 can be used to change the relative importance of the two terms appearing
in the definition of 7 as well as to act as penalty parameter. Incidentally, the
appearance of the control g in the J is necessary because we are not imposing any
a priori limits on the size of this control.

Under the realistic assumption that u-n=0on I, UTyand u-n > 0 on [,,
in this paper we prove the existence and uniqueness of optimal solutions and drive
an optimality system, i.e., a set of equations from which the optimal control and
state may be determined. Also, a finite element method is used to compute an
approximate solution of the optimality system. We have also developed an iterative
algorithm to compute the approximate solution.

We close this section by introducing some of the notation used in subsequent
sections. Throughout, C will denote a positive constant whose meaning and value
changes with context. Also, H*(D), s € R, denotes the standard Sobolev space of
order s with respect to the set D, where D is either the domain  , or its boundary
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T, or part of that boundary. Of course, H o(D) = L*(D). Dual spaces will be
denoted by (-)".
Of particular interest will be the space

(1.11) HY(Q) = {S € L} N): (%q: € L¥Q) fork=1,2}
and the subspace

(1.12) Hy(Q)={Se H'(Q):5=0 onTl.}.

For functions defined on I, we will use the subspace

(1.13) W(r.)={gec B'T.)|g=0 atT.nTi}.

Norms of functions belonging to H*(2), H*(T) and H*(T.) are denoted by ||-|.q,
Il lls.c and || - ||s.r., respectively. Of particular interest are the L2(Q)—norm || - |lo,a,
the semi-norm

2, 0T
. 1.0 = .. 0.0
(1.14) Tha= 3 Iz}
j=1 J
and norm
(1.15) 1T o= 1TE o +1ITI3 0

defined for functions belonging to H!(£). Also, we are interested in the semi-norm
| |1 r., defined by

(1.16) 95 = /r IV.gf? dT.
and norm
(1.17) g2 o, = o2, + llglf2r.

defined for functions belonging to H'(T.) and W(T.).
We define, for (T'S) € L'(Q),

(1.18) (T,S),,:/n:rsm
and, for (pq) € L'(T),

(1.19) (7 9r= /F pgdrl.

Thus, the inner product in L2(Q) is denoted by (-,-)q, that in L*(T) by (-, -)r- The
notation of (1.18)-(1.19) will also be employed to denote pairing between Sobolev
spaces and their duals.
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We will use the bilinear forms, for i = 1, 2,
(1.20) ai(T, S) = K; / VT.VSdQ VT,S e HY(Q)
Q
with the result that

(1.21) oT, §) = z;»: ki / VT -VS§dQ = ay(T, )+ (T, S),

t=1

and the trilinear form
(1.22) ¢(u,T,S)q, = / (u-VT)5dQ Vue HI(QZ) and VT, S € HI(Q;,).
2%

These forms are continuous in the sense that there exist constants¢; > 0 and ¢, > 0
such that, fori = 1,2

(1.23) 2T, S < cil|Tll1aliSlla, VT, S € H(Q),

(1.24) |e(u, T, S)a,| < ccllullyaullT(l1,a,llSlh.,
Yu € HY(Q,) and VT, § € HY(Q),

and thus

la(T, S)| < |ay(T, §)| + lao(T, S
(1.25) .<_ CIHT”th“S“l.nx + C'JllT“Lﬂa”S“l.ﬂ:
< (e + e)lITlhallSlh e VT,S§ € H'(Q).

Moreover, we have the coercivity property, for ¢ = 1,2, there exist constants C; > 0
such that

(1.26) a(T,T) 2 Cil|T|} a0, VT € HY(Q)

and thus

2
(1.27) o(T,T) = ay(T,T) + ax(T,T) 2 Y GillTI[} o, 2 min(Cy, Co)IITI}

i=1
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2. TaHE OPTIMIZATION PROBLEM AND THE EXISTENCE OF OPTIMAL SOLUTIONS

We begin by giving a precise statement of the optimization problem we consider.
We will assume the domain € is in R? and consists of two subdomains Q; and Q.
such that @ = Q, UQ, UT,. Let g € W(T.) denote the boundary control and
let T € HY(Q) denote the state, i.e., the temperature field. The state and control
variables are constrained to satisfy the system eqrefeq:asst1l-(1.9) , which we recast
into the following weak form: Find (T,t) € H'(Q) x H~'/*T.) such that

(2'1) G(T,S)+C(H,T, S)ﬂ: - (t,S)F= = (Q7S)ﬂ VS e Hl(Q)
and
(2.2) (T,R)r.— (9, R)r.=0 VRe H VAT.),

where we have introduced the simplifying notation
Q= _ Q_l in Qy,
Q2+ 2u(Vu+ VuT) : (Vu+ VuT) in Q..

One may show that, in the distributional sense,
(2.3) t= KQVT . n|rc.

In (2.1)}(2.2), we introduced the Lagrange multiplier ¢ to enforce the boundary
condition. This will be very useful in the proof of error estimates for finite element
approximations.

First, we show that for each possible control function g, there is a unique corre-
sponding state function (T, 1).

Lemma 2.1. For every g € W(T.), there ezists a unique (T,t) € H'(Q)x H~/*(T.)
such that (2.1)-(2.2) are satisfied. Moreover, there ezists a constant C = C(§2) such
that

(24) ITl.0 + l1tll-1/2r. < C1@Ql-1.0 + llgllir)-
Proof. For given g € W(T.), (2.1)-(2.2) is equivalent to

(2.5) a(T,S)+ c(u,T, S)a, =(Q,S)a VS € HH(Q),
(2.6) T=g on T,
and

(2.7) t= KgVT - n]rc.
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By the virtue of the trace theorem, let 7" in H 1(Q) satisfy T = gonI', and examine
the following problem: Find T in H'(Q) such that

T-T € Hy(Q),
(2.8) a(T-T,8)+¢(u,T-T,85)q,
=(Q,8)a-o(T,5) - c(u,T,5)a, VS € HH(Q).
Let T =T — T € HL(RQ). From the assumption of u, i.e., u-n = 0 on I'y, UT, and

u-n<0onT,, we have that

c(u,T,T)q, = %/ (u-n)T?dl

(2.9) ) 902 )

= _/ (u-n) 72 dl > 0.
2 Jr,

Thus, we have
(2.10) ao(T,T) + ¢(u, T, T)n, > min(C}, Cz)”T“fn

Therefore, by the Lax-Milgram theorem there is a unique T € HA(R), ie., T =
T+ 7T € HY(Q) and the estimate

(2.11) Tl < CUIRI-1,a + llglliyzr.) < CUIQI-10+ llgllsr.)

holds. From the trace theorem and the theory of partial differential equations (see
[4]), we have

(212)  |ltll-1/zr. £ C(ITlIh 0, + 11Q2ll-1.0.) < CUITIl1,0 + [1Q1]-1,0),

where Q; = @2 +2u(Vu + VuT) : (Vu+ VuT). Then, (2.4) follows from above two
estimates. (J

The admissibility set U,q is defined by
Ug = {(T,g) € H () x W(T.) : J(T, g) < o0, and there exists a

(2.13) /2 ) )
t € H-Y*(T,) and (2.1)}(2.2) is satisfied}.
Then, (T, §) € Uyq is called an optimal solution if there exists € > 0 such that

(2.14)
J(T,3) S T(T,9) YT, g) € Usq satistying ||T — T|; + [lg - §lls,r. < €.

We now show the existence and uniqueness of optimal solutions.

Theorem 2.2. There ezists a unique optimal solution (T, 3) € Uygq.
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Proof. We first claim that U, is not empty. Let ¢ = 0 and then let (T,3) €
HY(Q) x W(T.) be a solution of (2.1)-(2.2); note that with ¢ = 0, (2.1)-(2.2) is
equivalent to

a(T7 S) + (u, T’S)ﬂ: =(@,5)a VSE Hy(Q),

T=0 onT,,
and
(2.15) t =& VT -ml, .

By Lemma 2.1, (T, 1) exists and (T, 0) € Uyg. Now let {T(™), g} be a sequence in
U,q such that

(2.16)  a(T™,8)+ (0, 7™, §a, — (1, 8)r, = (Q,5)a VS € HY(Q),

(2.17) (T™,R)r, — ("™, R)r, =0 VR e H '*T.),
and

i 7M™ ¢ = T,
Jim 7( ) (r,},’)‘efu..j( 9)s

for some t™ € H-Y/2(T,). Then, using (1.10) and (2.13), we have that {{|g(*|;,r.}
is uniformly bounded which in turn yields that {||7™)|,} and {||t™||_1/2,r.} are
uniformly bounded. We may then extract subsequences such that

g(n) — §in W(T.)
T™ — Tin HY(Q)
t™ — fin H-YY(T,)
T™ o Tin L¥(Q)
T™|. — T in L*(T,)
for some (T,§) € H'(Q) x W(T.). The last two convergence results above follow
from the compact imbeddings H(Q) C L*(Q) and HY*(T,) C L*(T,). We may
then easily pass to the limit in (2.16)-(2.17) to determine that (T, §, f) satisfies (2.1)-

(2.2). Now, by the weak lower semicontinuity of J(-,-), we conclude that (T,§) is
an optimal solution, i.e.,

I8 = inf J(T,9)

(T,g)Eu.‘
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Thus, we have shown that an optimal solution belonging to U,4 exists. Finally, the
uniqueness of the optimal solution follows from the convexity of the functional and
the linearity of the constraint equations. O

Let
2 2 2
ij a 0
L e a———— i § =
> 2 S ag)+ S
= j= i=
be a differential operator of the second order in divergence form on an open set 2
of R% We introduce the bilinear differential operator associated with L

2 aT 8Ss X":Ca:r

(219 LT, 8)= 3 g+ 2o,
Now, setting
(2.19) Gt = Gy = {m on ,,
K, on §,,
(2.20) Q12 = Qs =0 on 2,
(2.21) o = {0 on §,,
u; on

where u = (u,, u;), we have the following theorems.

Theorem 2.3. Let T be the solution of (2.5)-(2.6) and let T, and T, be the restric-
tions of T to §; and Q,, then T, and T, are solutions of a transmission problem

(222) a'l(Tlv 51) = (Qh Sl)fh VS]_ € HI(QI),
(2.23) az(T32, §2) + c(u, T2, 52) = (@2, S2)a, VS2 € Hp(Q),
(2.24) T,=g¢g onT,,
(2.25) T1 = Tz on l"w,
oT, = 0T, _
(226) I‘Zl—a—; + KZEI,— =0 on Fw.

Proof. For the proof, see [12]. O
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Theorem 2.4. If we suppose the restrictions of Q in (2.5)-(2.6) to Q, and Q; are
C°(Q, UT,) and C*(Q,; UT,), respectively, and g € C%, then every solution
in HY(Q) of (2.5)-(2.6) has its restrictions Ty, T; to @1, Qy are C=(Q UT,),
C>(Q,UT,), respectively, and therefore in particular the solutions of the transmis-
sion problem (2.22)-(2.26).

Proof. For the proof, see ([11], Proposition 9, p5392 ). O
We define the space H*(Q) for s > 1 by

(227) B*(9) = {T € B{@)||ITll ) < o0},
where

2
(2.28) TV ey = 1T sy + Y T 0y

i=1
Theorem 2.5. Let T € H'(Q) be the solution of the problem (2.1)-(2.2). Then, we

have

(2.29) T} gagqy + 1t avar,) < Cl1@Ql o)
Proof. For the proof, see ([53], Theorem 8.5.1). O

3. FIRST-ORDER NECESSARY CONDITIONS FOR THE OPTIMAL SOLUTION AND
AN OPTIMAL SYSTEM

We now proceed to derive the first-order optimality conditions associated with
problem (2.14). The optimal control problem (2.14) is equivalent to the following
minimization problem: Find g € W(T.) such that £(g) := J(T(g),g) is minimized
where T(g) € H*(R) is defined as solution of (2.1}-(2.2). By studying the Gateaux
derivative of the functional X(g), we can obtain the first-order necessary conditions
for the optimal solution (T, §) in a straightforward manner. Let § be a solution of
the minimization problem min,ew(r,) K(g), then for every z € W(T.) we have

(3.1) VAER, K(3+Az)2K(g)

due to the definition of §. In particular, we have,
K(g+22) - K@) | 4

(3.2) YA >0, /\
and,
(3.3) va<o, KE+r-K@

A
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which implies that the Giteaux derivative of X(§)
dK@G) _ dIT@D) _,
dg g
Lemma 3.1. The mapping ¢ — T(g), from W(T.) into H'(Q), has a Gdteauz

derivative (dT(g)/dg)-z in every direction z € W(T.). Furthermore, (dT(g)/dg)-z =
V(z) is the solution of

(34)

(3.5) a(V, 8) +c(u,V, 8)a, — (1,5) =0 VS € HN(Q),

(3.6) (V. R)r. = (2, R)r. VR € HV*(T.).
Proof. It is immediate from the linearity of (2.1)-(2.2). O

Now, we derive an optimality system from the first-order necessary condition
(3.4). For each fixed g, the derivative dK(g)/dg - z for every direction z € W(T.)
may be easily computed

(3.7)
M.nm/ (Vg Vz+g2) dr+3/ (T = Ty)V dT
dg r. v Jr,

1
= 526(Vg, V2)r. + #26(g, ). + (T - T, V)e Vze W(T.)

where for each z € W(T.), V € H(f) is the solution of (3.5)-(3.6).
Let (T,t) € H*(Q) x H-**T,) be the solution of (2.1}-(2.2) and let (®,7) €
HY(Q) x H-Y*(T,) be defined as the solution of the adjoint problem

(38)  a(Z,8)+c(u, Z,®)a, + (r, Z)r. = f?(z,:r —Tor. VZ e HYQ),

(3.9) (W, ®)r, =0 VYW e HV*(T,).
Setting $ = & in (3.5)-(3.6) and Z = V in (3.8)-(3.9), we have that

1
(3.10) (Ty2)r, = ;(V,T - Ta)r, -
Thus, from the necessary condition (3.4), we see that the optimal value of the control
g satisfies
1
(3.11) (Vg,V2z)r.+(9,2)r. = —a(r, 2)r. Vze W(T.).

Collecting the above results, we obtain the optimal system
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(3.12) (T, S)+ c(u,T, S)a, - (t, S)r. = (Q,S)a  ¥S € HY(Q),

(3.13) (T, R)e. - (9,R)r.=0 VR H-VAT,),

(3.14)  a(Z,®) + c(u, Z, B)a, + (1, Z)p, = %(Z,T ~T)r. VZ e H\Q),
(3.15) (W, @), =0 YW e H YYT,)

and

(316) (Y8, Y + (9.9 = —5(n2n, V€ W)

Integration by parts may be used to show that the system (3.12)-(3.16) constitutes
a weak formulation of the boundary value problem

(3.17) - AT =Q, inQy,

(3.18) =R AT + (u-V)T = Q. +2u(Vu + VuT) : (Vu+ VuT)  in Q,,

(3.19) T=g onT,,

(3.20) -k AP =0 in Q,
(3.21) K AP - (u-V)d =0 in Q,,
(3.22) $=0 onTl,,

(3.23) %:— = :i;(T - T) onT,
and

(3.24) ~-A,g+g= %VQ . n|r= onT,.



A COUPLED SOLID/FLUID TEMPERATURE CONTROL PROBLEM 13

4. FINITE ELEMENT APPROXIMATION AND ERROR ESTIMATES

A finite element discretization of the optimality system (3.12)-(3.16) is defined
as follows. One may choose families of finite dimensional subspaces V* C H(§,),
V} c HY(R,) such that VP[r, = V}|r,. These families are parameterized by
the parameter h that tends to zero; commoaly, this parameter is chosen to be some
measure of the grid size in a subdivision of {2 into finite elements. Let V* = VF UV}
and O* = V*|p_, i.e., O* consists of the restriction, to the boundary T, of the
functions, belonging to V*. For all choices of conforming finite element spaces, we
then have that V* C H}(Q) and O* ¢ H-V*(T.). Next, let N* = V*|p_. Again,
for all choices of conforming finite element spaces V* we have that N* ¢ H!(T.).
Let N} = N*nW(T.). For the subspaces V}*, V}}, O* and N, we assume the
approximation properties: there exist an integer k£ and a constant C, independent
of h, Ty, Ty, t and g, such that

(41  inf |7 - T £ Ch™M|Tllmra, VT € H™HQ), 1< m <k,

Vl" l

(4.2) TEIlf “Tg - T;“l S Chm”TQH"H.Iyna VTg € Hm+l(Qg), 1 S m S k,

TEVS

(4.3) Jf, it = t*|[-1/2r. € CR™|[tllmorj2r, VEE H™3(T.), 1Sm <k
and

(4.4) ,»i?fn g - gh“:,r‘c < C""m_"-ﬂ/z”g”m+1/'z,r‘=
[+]

VgeW(l.),1<m<k 0<s< 1.

A finite element algorithm for determining approximations of the solution of the
optimality system (3.12)-(3.16) is as follows: seek T* € V* t* € O*, g* € N¢,
®* € V* and 7* € O® such that

(45)  a(T" 5" +c(u, T "), — (%, SM)r. = (Q, %) VS* € V*,
(4.6) (Th,Rh)rc - (gh, .Rh)r“= =0 R? € Oh,

(4.7) k20(g*, K™, + 626(V,9", V., K")p, = —(K*,7*)r. VK" € N{,

(4.8) a(Z", ") + c(u, 2", 8", + (2%, M)r, = %(Z",T" _ T, VZ' eV
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and
(4.9) (Wh, "), =0 VW" € O*(T.).

The major task in this section is to obtain error estimates for the finite element
solutions. It turns out to be convenient to apply the Brezzi- Rappaz- Raviart theory,
even though our problem is linear. We introduce some spaces and operators, and
verify the requirements of that theory. In the following discussion, the constants &,
K, and § will be held fixed. Thus, the system (3.12)-(3.16) and (4.5)-(4.9) depend
on the single parameter v.

Let X = HY(Q) x H-Y*¥T,) x W(T.) x H(Q) x H-Y¥T.), Y = (HY(Q)) x
H-YY(T,) x (H}(R))* and Z = L¥Q) x L¥T.) x L*(T,). Let the operator B €
L(Y, X) be defined as follows: B(Q,9,P) = (T,1,§,®,7) for (Q,6,P) € Y and
(T,1,§,%,7) € X if and only if

(4.10) o(T, ) + c(u,T, S)a, = (£, S)r. = (@, S)a VS € H(RQ),
(4.11) (T,R)r. - (0,R)r, =0 YRe HY*(T,),

(412) Kg&(g,K)pc + ﬂzé(v,g,v,K)pc = —(Kv‘?)l‘, VK € W(I‘c),

(4.13) o(Z,®) + c(u, Z,¥)q, + (Z,F)r. = (Z,P)a VZ € H(Q)
and
(4.14) (W,3)r, =0 VW € H3(Q).

Note that this system is weakly coupled. First, one may separately solve the prob-
lems (4.10)-(4.11) for T and ¢ and (4.13)-(4.14) for $ and 7; then, one may solve
the Laplacian problem (4.12) for §.

Analogously, the operator B* € L(Y;X) is defined as follows: B*(Q,0,P) =
(Th, gk, &*, ) for (§,0, P) € Y and (T*,*,5*,®,7*) € X* if and only if

(4.15)  a(T*, 5 + c(u,T*, $M)q, — (£, 5", = (@, ") VS €V,
(4.16) (T*,R*)r, — (0,R")r, =0 VR* € 0%,
(4.17) ﬂzé(gha Kh)rc + 526(V:§hvvsKh)Fc = "(Kh,fh)f‘c VK" € Nc';‘,

(4.18)  a(Z*,&") + c(u, Z*, ®")q, + (Z*, ), = (Z*,PM)o VZh e V™
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and
(4.19) (W™, @M. =0 YW* € O~

The system (4.15)-(4.19) is weakly coupled in the same sense as the system (4.10)-
(4.14).

Theorem 4.1. The second order elliptic problem (4.10)-(4.14) has a unique solu-
tion belonging to X. Assume that (4.1)-(4.4) hold. Then the discrete second order el-
liptic problem (4.15)-(4.19) has a unique solution belonging to X*. Let (T,1,5,8,7)
and (T*,t*, g*, ®* 7*) denote the solutions of (4.10)-(4.14) and (4.15)-(4.19), re-
spectively. Then we have that

(420) |IT = TMlu+ 11 = Pll-yjere + 115 = §"llar. + 112 - @41

+ [|# = #*||-1j2r. =0 as h—0
In addition, if (T,1,§,8,7) € H}(Q)x HY*(T.)x H(T.) x H*(Q) x H'*(T.), then

“T - Th”l +1lt - Eh”—l/Z.l": + 11§ = 7 llu.r.
(4.21) +1|® - <T>"II1 + |7 - "-'h”-1/2,r=
< CAIT || gagay + @l g2(ey)-

Proof. First, it follows from Lemma 2.1 that the two second order elliptic problems
(4.10)-(4.11) and (4.13)-(4.14) each have a unique solution (T, {) and (&, 7) belong-
ing to H1(Q) x H-Y*(T,), respectively. From the Babuska’s theory, the discrete
second order elliptic problems (4.15)-(4.16) and (4.18)-(4.19) each have a unique
solution (7*,1*) and (®*,7"*) belonging to V* x O, respectively. Moreover, we
have that

(4.22) T —T*l + ||t — 2ll-1/20. — 0
and
(4.23) 1@ = @*|ly + 1|7 = #*]l-1/20. — 0

as k — 0, and if in addition (T,%) € H?(Q) x HYX(T,) and (8,7) € H*(Q) x
HY*T,), we have that

(4.24) T — TP/l + lf - 2l|-/2.5. < ChIIT ] graceys

(4.25) 18 = &1, + [IF = #ll-1/2,r. < ChlI®l|2g0-
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Note that the problem (4.12) is a well known equation. Thus, we have that the
problems (4.12) and (4.17) both have unique solutions, that

(4.26) 131120, < ClIFlIs2r. < Cll®l a3ays

(427) 1§ - §"lhr. S CUIG = e, + 11F = 7Hll-ap2r.) V5" € N
Using (4.4), (4.22) and (4.23) we then have that

(4.28) g - §*llir. =0 as h—0,

and using (4.4), (4.24) and (4.25), we conclude that

(4.29) 1§ = §*llir. < CRI|®@|lz3a)-

Then, (4.22), (4.23) and (4.28) yield (4.20), and (4.24), (4.25) and (4.29) yield
(4.21). O

Let A denote a compact subset of R,. We define the operator G from A x
X to Y as follows: G(v,(T,t,9,%,7)) = (§,0,P) for every (Q,0,P) € Y and
(v,(T,t,g,®,7)) € A x X if and only if

(4.30) (Q,8)a=—(Q1,a, — (Q2,5)a, VS e HY(Q),
(4.31) (6,R)r, = (-g,R)r. VRe H*(T,)

and

(4.32) (P, Z) = —%(Z,T — T, VZe H\(Q),

where Q2 = Q3 + 2u(Vu + VuT) : (Vu + VuT). The operator G is obviously of
class C*. The derivative of G with respective to (7,t,g, ®,7), which we denote by
Gx(7,(T,t,g,8,7)), can be defined as follows:

1
(4'33) gX(‘y’(Tat?ngaT)) = (07 _g,-;T)

for every (v,(T,t,9,9,7)) € A x X. Furthermore, G(v,(T,t,9,®,7)) € L(X, Z).
Since A is a compact interval in R, and the constant , is fixed, we see that G and
it’s first and second Fréchet derivatives and all locally bounded maps.

It is easily seen that the optimality system (3.12)-(3.16) is equivalent to

(4.34) (T,t,9,%,7)+ BG(7,(T,t,9,8,7)) =0
and that the discrete optimality system (4.5)-(4.9) is equivalent to
(4.35) (T*,¢*, g*, ", 7%) + B*G(7,(T*, t*, ", &* ") = 0.
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Now, having verified the hypotheses of the Brezzi- Rappaz- Raviart theory, we may
use that theory to deduce the estimate
NT =Tl + [t = *ll-172r. + g = g* [l r
(4.36) +11® — 8"l + [Im = T*l-1/2r.
< Ch{lITl gay + 1181l aagay)-
We also have, from the theorem 2.5, applied to (3.12)-(3.16), the regularity estimates

(4.37) Tl gragqy + Nellis2,r. + gl + 112l gy + il .
< C(1Qlle + HTallys2,r,)-

The combination of (4.36) and (4.37) results in the following error estimates.

Theorem 4.2. Let(T,t,®, 1) be the solution of (3.12)-(3.16) and let (T*,t*, &*, )
be the solution of (4.3)-(4.9). Assume that T,® € H*(Q); also assume that (4.1)-
(4.2) hold. Then,

T = TH| + 11t = t*ll-aj2r. + llg — ¢*lir.
(4.38) +11® - @}y + [I7 = 7*-1/an.
< Ch(|1Qllo + | T4ll1/2.r. ),
where C is independent of h, T, .

We note that higher oreder estimates are possible if T is smooth in each sub-
domain Q; and .

5. NUMERICAL ALGORITHM

Let us consider the gradient method for the following minimization problem:
Find g € W(T.) such that K(g) := J(T(g),g) is minimized where T(g) € H(Q) is
defined as solution of (2.1)-(2.2).

The classical Simple Gradient Algorithm proceeds as follows:

Given ¢\9;
1 dK(¢™)

1 defi (n+1) = gln) _
(5.1) efine ¢ g i dg

recursively.

Recall from §3 that for each fixed g, the derivative dK(g)/dg- z may be computed

dk 1
62 B b-Ag4 0.2+ 2T-TuVk, Ve W),

where for each z € W(T.), V € H}(Q) is the solution of
(5.3) a(V,85)+ ¢(u,V,8)q,=0 VS € Hp(D),
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(5.4) V=z on L.

From (3.13), we see that
1

0%
(5.5) (—"tza—n,z)rc = ;;(V,T— To)r, .
Thus, (5.1) may be replaced by
for n=0,1,2,...,
1 o™
n+1) = o) — L S(—A g™ & g™y —

e 9= (e ag® £ 6 - )

109™)

A myl
A St 0

where ®(") is determined from g(*) through the relations

(5.7) a(T™, 8) + ¢(u,T™, $) = (Q,S) VS € HH(Q),

(5.8) T = g™ on T,

and

(5.9)  a(Z,8™) + c(u, Z, &™) = :,1.(2, T™ —T)r, VZ € HL(R),

(5.10) ™ =0 on T.

Therefore, we have the gradient algorithm results in the following iteration:
Choose gtV;
for n=1,2,3,..., solve for 7™ and &™ from

o(T™, S) + ¢(u, T™, S) = (Q,5) ¥S € Hy(R),
T = g™ on T,

and
(5.11)

a(Z,8™) + c(u, Z, 8™) = }/(z, T™ _ T, VZ € H5(Q),
=0 on T,
then solve for ¢(**%) from
196M
(n+1) _ A gm 1 L
g Beg™ § On

The convergence of the algorithm (5.11) is a direct consequence of the following

r.’

lemma.
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Lemma 5.1. Let K be a real-valued functional on a Hilbert space X with norm
Il - llx and scalar product (-,-)x. Suppose that there ezist two constants m and M
such that

i) K has a local minimum at a point Z is of class C* in an open ball B centered
al z,
i) vue B, ¥(z,y)€ X xX, K'(u)- (z,y) < Mllz||x|lyllx,
iii) Vu e B, Vz€ X, K'(u)-(z,z)>mlz|l}.

Let R denote the Riesz map, t.e. < f,z >= (Rf,z)x forallz € X and all f € X".
Choose (% € B and choose a sequence {p,} such that 0 < p. < p, < p* < 2m/M3.
Then, the sequence {z(™} defined by

(5.12) g™ = ("= _ p RK'(z(*"D)  for n=1,2,...,

converges to £. Furthermore, if B = X and Z is a global minimum, then the gradient
algorithm converges to T for any initial value z(%).

Proof. see, e.g., (8] O

Theorem 5.2. Let (T™, ) g(*)) be the solution of (5.11) and (T, ®, g) the solu-
tion of (3.12)-(3.16). Then, if v§ is sufficiently large, g™ — g and thus, T™) — T
in H'(Q) and &) — & in HL(Q) as n — oo.

Proof. In (5.11), we have the fixed parameter p = 1/(k.6). For each g € W(T.),
the second Fréchet-derivative £”(g) - (z, w) may be computed by

1
(513) K:”(g) ) (Z, w) = K25(va vz)l"e + ’{‘.’6(1‘0’ Z)Fc + ;(U’ V)F,a

where U € H}(Q) and V € H'(Q) are the solution of

(5.14) a(U,8)+c(u,U,5)=0 VS e HLQ),
(5.15) U=w on T,

and of

(5.16) a(V,8)+c(u,V,8)=0 VS € H,(Q),

(5.17) U=z on T.,.
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One can easily have that ||U]|; < Cl|wi1.r. and ||V]|}1 < C||zl|1,r., where the value
of the constant C' depends only on 2. Then,

n C
K"(g) - (z,w) < K26]|wllr.ll=llur. + ;llwllx,nHZHl,n

(5.18) c
= (K26 + ',7)|lw||1.1‘c||z||1,rc
and
1
K"(g)-(z,2) = Kab]|2||? +—/ V|2 dl
10 (6):(5:2) = mabllellze, + 2 [ 71

2> Kz‘ﬂlzllf,r;

Setting M = k,6+C/v and m = k,8, we have, if v§ > C/((V2~1)k2), 2m/M? >
p = 1/(k26). The other hypotheses of Lemma 5.1 are easily shown to be valid.
Hence, from that lemma, we obtain that

(5.20) g™ —-g in W(T.) as n — oo.
The desired convergence results follow from the a priori estimate (2.4). O

Of course, the gradient algorithm (5.11) is applied to the discrete equations.
Then, we have two contribution to the errors in the computational solution, the
discretization error T — T"* and the iteration error T* — 7" Ina practical point
of view, it is difficult to calculate A,g(®) in the last equation of (5.11). By using
(3.24), we can substitute (5.11) by the following iteration:

Choose ¢V and ®®;
for n=123,..., solvefor 7™ and &™) from
a(T™,8) + ¢(u,T™,8)=(Q,S) VS € HLH(Q),
T™ =g¢™ on T,
and
(5.21) )
a(Z,8™) + c(u, Z,8™) = ;(z, T™) — Ty, VZ € HL(Q),
3™ =9 on T,
then solve for g**V) from

g(n+1)=g(n)_l<aq’("-1) _ 9™ )
) on 'Te 9n 'Te
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6. NUMERICAL EXPERIMENTS

Test 1 : We consider that the domain € is the unit square (0,1) x (0,1) C R?,
sub-domain £, = (0,1) x (0.75,1) and sub-domain £, = (0,1) x (0,0.75). Let
I, =(0.075,1)x {0.75} c T, = (0,1) x {0.75} and I'. = {0} x (0,0.75) (see Figure
1 without the bump on the bottom boundary).

The finite element spaces V}* and V} are chosen to be piecewise quadratic ele-
ments on a triangle mesh such that V* = V» on T',. We use the mesh size h = 1/12
for all computation. Of course, calculations with varying mesh sizes were performed.
In this paper, not being interested in the convergence history with varying mesh
sizes, we do not report them.

Now, we consider the following problem

(6.1) -AT=6.0 on
(6.2) —2AT +(u-V)T =0 on £,
(6.3) T=1+4+g on T,

oT
(6.4) T 0 on 9Q\T.,

where the velocity u is the solution of the Navier-Stokes equations

(6.5) —Au+(u-V)u+Vp=0 in,,
the incompressibility constraint
(6.6) divu=0 in,,

and the boundary condition

(6.7) u=h onT,

(6.8) u=0 onT,UT,,
3u1

(6.9) D 0 and u; =0 onT,,

where u = (u,u,) and h = (1.5y — 2y%,0). To get approximate solutions for the
Navier-Stokes solutions, we use the Taylor-Hood finite element on the domain §2,.
Actually, we have simple solutions u = (1.5y — 2y%, 0) of the above Navier-Stokes
problems.
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IT —1.2llor, | llollr. | J(T,g)
y=1,6=1 |2.88669x 10-7 | 15.63322 | 15.64765
v =0.01, 8 = 0.003 | 1.93423 x 10-3 | 78.80300 | 0.333120

TABLE 1. The numerical results for Test 1.

Note that since all data in (6.1)-(6.9) are sufficiently smooth in each domain €2;
for i = 1,2, we may assume that T € H*(Q), s > 3 from the theorem 2.4. Thus we
may use piecewise quadratic elements for the finite element approximation for the
fast convergence with respect to h.

When g = 0 in (6.3), we say that the problem (6.1)-(6.9) is an uncontrolled
problem. The numerical solution of the uncontrolled problem is shown in Figure 2
and Figure 3 in which one can see that the temperature is above 2.0 on (0.3,1) x
{0.75} and even higher in the domain (0.3, 1) x (0.75,1).

Now, we try to get the desired temperature distribution along I',. One can choose
any reasonable desired temperature T, on I',, but we choose the parameter 7; = 1.2
on I',, thus we have

1
(610)  J(Tg)=5 [ IT-12Pdr 48 [ gl +19.g1%) ar.

For the various choices of the parameters v and § appearing in the functional (6.10),
the computations were performed. In this paper, we report the numerical results
for the cases

(Hry=6=1,

(2) v = 0.01 and & = 0.003.
The costs are shown in the Table 6.

In Figure 4-7, we plot the surfaces of the temperature T and adjoint state ® for
each case. If one chooses the relatively small 4§, then one can have the relatively
small value of ||T — 1.2||o ..

Further reinforcement of our conclusions can be obtained from Figure 8 and 9 in
which are found contour plots of the temperature T and adjoint state ®.

In Figure 10, we plot the approximate optimal control g* on the boundary T'.. In
Figure 11, we compare the temperature distribution on I', in the uncontrolled case
with the optimal temperature distributions in the controlled cases.

Test 2 : We solve the problem (6.1)-(6.9) with h = (1.5y—2y?%,0) on the domain Q
which has a bumped boundary (see Figure 1 and 12). We assume that all parameters
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FiGURE 3. The temperature contour plot for the uncontrolled problem.
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1T = 1.2}lor, | llgllr. | J(T,9)
v=1,6=1 |3.77877 x 10-% | 18.65837 | 18.67727
7 = 0.01, § = 0.002 | 3.13342 x 10~ | 117.14224 | 0.390956

TABLE 2. The numerical results for Test 2.

and data are the same as in Test 1. To get the approximate solutions for the Navier-
Stokes equations, we also use the Taylor-Hood finite element on the domain §2,.
We report the numerical results for the cases

Hry=é=1,

(2) ¥ =0.01 and § = 0.002.
The costs are shown in the Table 6. We get the almost same results as in Test
1 except that we need a little more control g on I',. Thus, even though the fluid
flow is moderately complicated, given any € > 0, we can have v and é such that
||IT = Tallor, < € when +6 is sufficiently small.

In Figure 12, we plot the temperature contour for the uncontrolled problem. In
Figure 13-14, we have the contour plots of the temperature 7 and adjoint state @
for each cases. Finally, Figure 15-16 display the approximate optimal control g*
along I'. and the temperature distributions on T',, respectively.

Remarks : For the case vy = § = 1, it was found that 10 — 15 iterations were
sufficient to get the optimal control g. Since v = 1 and maximum velocity is 1,
the control g affects the temperature distribution on I', very weakly. For the case
that 6 is small, for example 76 < 0.1, our gradient method does not converge.
Thus, we need to adjust the iteration step size. In such case, we need a significant
number of iterations. Thus, one may look for an efficient iteration algorithm. But
the good news is that the iteration algorithm requires only one LU factorization and
the same number of back and forward substitution as the iteration number , i.e., a
comparable number of floating point operations relative to that required for solving
the full coupled system (4.5)-(4.9). Of course we assume that h is sufficiently small.
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FIGURE 12. The temperature contour plot for the uncontrolled problem.
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Ficure 16. The temperature distributions on T',.
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